Statistics of Prime Divisors in Function Fields

نویسنده

  • ROBERT C. RHOADES
چکیده

ROBERT C. RHOADES Abstra t. We show that the prime divisors of a random polynomial in Fq[t] are typi ally Poisson Distributed . This result is analogous to the result in Z of Granville [1℄. Along the way, we use a sieve developed by Granville and Soundararajan [2℄ to give a simple proof of the Erdös-Ka theorem in the fun tion eld setting. This approa h gives stronger results about the moments of the sequen e {ω(f)}f∈Fq [t] than was previously known, where ω(f) is the number of prime divisors of f . 1. Introdu tion Let ω(n) denote the number of distin t prime divisors of an integer n. A elebrated theorem of Erdös and Ka is that for α ≤ β one has

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Prime Divisors on Elliptic Curves and Multiplication in Finite Fields

Let K=Fq be an elliptic function eld. For every natural number n we determine the number of prime divisors of degree n of K=Fq which lie in a given divisor class of K.

متن کامل

Recognition of the group $G_2(5)$ by the prime graph

Let $G$ be a finite group. The prime graph of $G$ is a graph $Gamma(G)$ with vertex set $pi(G)$, the set of all prime divisors of $|G|$, and two distinct vertices $p$ and $q$ are adjacent by an edge if $G$ has an element of order $pq$. In this paper we prove that if $Gamma(G)=Gamma(G_2(5))$, then $G$ has a normal subgroup $N$ such that $pi(N)subseteq{2,3,5}$ and $G/Nequiv G_2(5)$.

متن کامل

On the computation of class numbers of real abelian fields

In this paper we give a procedure to search for prime divisors of class numbers of real abelian fields and present a table of odd primes < 10000 not dividing the degree that divide the class numbers of fields of conductor ≤ 2000. Cohen–Lenstra heuristics allow us to conjecture that no larger prime divisors should exist. Previous computations have been largely limited to prime power conductors.

متن کامل

Computing in Picard groups of projective curves over finite fields

We give algorithms for computing with divisors on projective curves over finite fields, and with their Jacobians, using the algorithmic representation of projective curves developed by Khuri-Makdisi. We show that various desirable operations can be performed efficiently in this setting: decomposing divisors into prime divisors; computing pull-backs and push-forwards of divisors under finite mor...

متن کامل

Pro-` Galois Theory of Zariski Prime Divisors

— In this paper we show how to recover a special class of valuations (which generalize in a natural way the Zariski prime divisors) of function fields from the Galois theory of the functions fields in discussion. These valuations play a central role in the birational anabelian geometry and related questions. Résumé (Théorie de Galois pro-` des diviseurs premiers de Zariski) Dans cet article nou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007